## Alsmaphorazines A and B, Novel Indole Alkaloids from *Alstonia pneumatophora*

Koichiro Koyama,<sup>†</sup> Yusuke Hirasawa,<sup>†</sup> Alfarius Eko Nugroho,<sup>†</sup> Takahiro Hosoya,<sup>†</sup> Teh Chin Hoe,<sup>‡</sup> Kit-Lam Chan,<sup>‡</sup> and Hiroshi Morita<sup>\*,†</sup>

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan, and School of Pharmaceutical Sciences, University Sains Malaysia, 11800 Penang, Malaysia

moritah@hoshi.ac.jp

Received August 4, 2010

## ABSTRACT



alsmaphorazine A (1) : R=OH alsmaphorazine B (2) : R=H

Two novel indole alkaloids, alsmaphorazines A and B, were isolated from the leaves of *Alstonia pneumatophora* (Apocynaceae), and their structures were determined on the basis of the 2D NMR and MS spectral analysis. These alkaloids possessed a new skeleton consisting of an 1,2-oxazinane and an isoxazolidine chromophore. The absolute configuration of alsmaphorazine B was determined by using CD spectral analysis. Alsmaphorazine A inhibited the NO production in the LPS-stimulated J774.1 cells dose-dependently without affecting the cell viability.

Alstonia plants growing widely in the tropical regions of Africa and Asia are a well-known rich source of unique heterocyclic alkaloids having a monoterpene indole skeleton. These alkaloids have attracted great attention in the biogenetic<sup>1</sup> and biological fields for their anticancer, antibacterial, anti-inflammatory, antitussive, and antimalarial properties.<sup>2</sup> Previous investigations have shown that the skeleton and the amounts of the monoterpene indole alkaloids in the plants vary greatly depending upon the areas where they grow.<sup>3</sup> For example, picrinine-type indole alkaloids are generally rich in the *Alstonia* species from India, Pakistan, and Thailand, whereas angustilobine-type ones are in species from Indonesia and Philippine.<sup>3</sup> In our present study, we

isolated two novel alkaloids, alsmaphorazines A (1) and B (2) from *Alstonia pneumatophora* (Apocynaceae) collected in Malaysia and elucidated their structures. Of them, 1 was found to inhibit the NO production in J774.1 cells.

ORGANIC LETTERS

2010 Vol. 12, No. 18

4188-4191

Alsmaphorazine A,<sup>4,5</sup> {1,  $[\alpha]_D^{20}$  -62 (*c* 0.1, MeOH)} showed a pseudomolecular ion peak at m/z 385 (M + H)<sup>+</sup> in the LCESIMS. The molecular formula was established to be C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub> by the LCHRESIMS [m/z 385.1403 (M + H)<sup>+</sup>,  $\Delta$  +0.9 mmu], and its structure was established mainly on the basis of the NMR data. Its <sup>13</sup>C NMR spectrum (Table

<sup>&</sup>lt;sup>†</sup> Hoshi University.

<sup>&</sup>lt;sup>‡</sup> University Sains Malaysia.

<sup>(1) (</sup>a) Cai, X. H.; Du, Z. Z.; Luo, X. D. *Org. Lett.* **2007**, *9*, 1817–1820. (b) Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le Men-Olivier, L.; Sevenet, T.; Goh, S. H. *Phytochemistry* **1988**, *27*, 3955–3962. (c) Marini-Bettolo, G. B.; Nicoletti, M.; Messana, I.; Patamia, M.; Galeffi, C.; Oguakwa, J. U.; Portalone, G.; Vaciago, A. *Tetrahedron* **1983**, *39*, 323–329.

<sup>(2) (</sup>a) Kamarajan, P.; Sekar, N.; Mathuram, V.; Govindasamy, S. Biochem. Int. 1991, 25, 491–498. (b) Saraswathi, V.; Subramanian, S.; Ramamoorthy, N.; Mathuram, V.; Govindasamy, S. Med. Sci. Res. 1997, 25, 167–170 (anticancer). (c) Keawpradub, N.; Kirby, G. C.; Steele, J. C. P.; Houghton, P. J. Planta Med. 1999, 65, 690–694 (antiplasmodial). (d) Husain, K.; Jantan, I.; Kamaruddin, N.; Said, I. M.; Aimi, N.; Takayama, H. Phytochemistry 2001, 57, 603–606. (e) Husain, K.; Jantan, I.; Said, I. M.; Aimi, N.; Takayama, H. J. Asian Nat. Prod. Res. 2003, 5, 63–67. (f) Jagetia, G. C.; Baliga, M. S. Phytother. Res. 2006, 20, 103–109. (g) Khan, M. R.; Omoloso, A. D.; Kihara, M. Fitoterapia 2003, 74, 736–740. (h) Gupta, R. S.; Bhatnager, A. K.; Joshi, Y. C.; Sharma, M. C.; Khushalani, V.; Kachhawa, J. B. Pharmacology 2005, 75, 57–62.

| alsmaphorazine A (1) |                                |                 |                | alsmaphorazine B (2)           |                 |                  |
|----------------------|--------------------------------|-----------------|----------------|--------------------------------|-----------------|------------------|
| position             | $\delta_{ m H}$                | $\delta_{ m C}$ | HMBC           | $\delta_{ m H}$                | $\delta_{ m C}$ | HMBC             |
| 2                    |                                | 183.1           | 6, 15          |                                | 186.2           | 6, 15            |
| 3                    | 4.14 (1H, m)                   | 68.4            | 5, 6b, 14a, 15 | 4.19 (1H, m)                   | 68.2            | 5, 6b, 14a, 15   |
| 5                    | 4.19 (1H, ddd, 10.5, 6.4, 2.1) | 67.1            | 6a, 21a        | 4.22 (1H, m)                   | 67.3            | 6a, 21a          |
| 6a                   | 2.47 (1H, dd, 14.3, 6.4)       | 40.6            | 21             | 2.54 (1H, dd, 14.3, 6.5)       | 40.3            | 21               |
| 6b                   | 2.12 (1H, d, 14.3)             |                 |                | 2.11 (1H, d, 14.3)             |                 |                  |
| 7                    |                                | 64.1            | 5, 6, 9, 14a,  |                                | 64.1            | 5, 6, 9, 14a     |
| 8                    |                                | 146.2           | 6a, 10         |                                | 144.4           | 6a, 10, 12       |
| 9                    | 6.85 (1H, dd, 7.6, 0.8)        | 113.9           | 11             | 7.42 (1H, d, 7.2)              | 123.2           | 11               |
| 10                   | 7.17 (1H, dd, 7.9, 7.6)        | 129.8           |                | 7.35 (1H, dd, 7.4, 7.2)        | 128.5           | 12               |
| 11                   | 6.82 (1H, dd, 7.9, 0.8)        | 117.1           | 9              | 7.39 (1H, dd, 7.5, 7.4)        | 129.7           | 9                |
| 12                   |                                | 150.7           | 10, 11         | 7.61 (1H, d, 7.5)              | 121.9           | 10               |
| 13                   |                                | 140.1           | 9, 11          |                                | 153.6           | 9, 11            |
| 14a                  | 2.03 (1H, ddd, 14.1, 4.8, 4.1) | 18.9            |                | 2.05 (1H, ddd, 14.1, 5.4, 4.2) | 19.1            | 15               |
| 14b                  | 1.22 (1H, d, 14.1)             |                 |                | 1.21 (1H, d, 14.1)             |                 |                  |
| 15                   | 3.19 (1H, m)                   | 45.0            | 14b, 21a       | 3.22 (1H, m)                   | 45.4            | 14, 21           |
| 16                   |                                | 78.9            | 14, 15         |                                | 79.2            | 14, 15           |
| 18                   | 2.31 (3H, s)                   | 25.0            |                | 2.32 (3H, s)                   | 25.0            |                  |
| 19                   |                                | 203.6           | 15, 18, 21a,   |                                | 203.8           | 15, 18, 21a      |
| 20                   |                                | 90.1            | 14b, 18, 21a   |                                | 90.2            | 14b, 15, 18, 21a |
| 21a                  | 2.68 (1H, dd, 14.4, 10.5)      | 39.4            | 6, 15          | 2.68 (1H, dd, 14.4, 10.4)      | 39.5            | 6, 15            |
| 21b                  | 1.83 (1H, dd, 14.4, 2.1)       |                 |                | 1.87 (1H, dd, 14.4, 1.8)       |                 |                  |
| 22                   |                                | 172.8           | 23             |                                | 172.9           | 23               |
| 23                   | 3.76 (3H, s)                   | 53.1            |                | 3.77 (3H, s)                   | 53.2            |                  |

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR Data of Alsmaphorazines A (1) and B (2) in CD<sub>3</sub>OD at 303 K by 600 MHz Cryo Probe NMR

1) revealed 20 carbon signals due to four sp<sup>2</sup> quaternary carbons, three sp<sup>2</sup> methines, one ketone, one ester carbonyl, three sp<sup>3</sup> quaternary carbon, three sp<sup>3</sup> methines, three sp<sup>3</sup> methylenes, one methyl, and one methoxy group. The carbon resonance at  $\delta$  183.1 due to an imine carbon indicated the presence of an indolenine moiety. The <sup>13</sup>C NMR signals of C-12 and C-16 ( $\delta_{\rm C}$  150.7 and 78.9) indicated the presence of a hydroxyl group on each, that of C-20 ( $\delta_{\rm C}$  90.1) the presence of an oxygen atom on it, and those of C-3 ( $\delta_{\rm C}$  68.4) and C-5 ( $\delta_{\rm C}$  67.1) the presence of an *N*-oxide moiety linking to them. The chemical shift of C-20 NMR signal and the molecular formula by LCHRESIMS, C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub>, suggested the presence of an oxyamine chromophore.

Partial structures **a** (C-9–C-11), **b** (C-5–C-6 and C-21), and **c** (C-3 and C-14–C-15) shown in heavy lines in Figure



Figure 1. Selected 2D NMR correlations for alsmaphorazine A (1).

1 were deduced from a detailed analysis of the <sup>1</sup>H-<sup>1</sup>H COSY spectrum. The HMBC cross-peaks between H-9/C-7, H-6a/ C-8, and H-6b/C-3 indicated that the C-7-C-8 unit connected the three units **a**, **b**, and **c** together. The HMBC correlation between H-5/C-3 and the chemical shifts of C-3 and C-5 NMR signals implied that C-3 and C-5 were both connected to N-4, the correlations between H<sub>3</sub>-18/C-19 and H<sub>3</sub>-18/C-20 that C-18 and C-20 were connected to C-19, those between H-14/C-20, H-15/C-19, H-21/C-19, and H-21/C-15 that C-15 and C-21 were connected to C-20, and those between H-14/C-16, H-6/C-2, and H-15/C-2 that C-2 and C-6 were connected to C-7, and C-2 and C-15 to C-16. To decide which carbon was connected to an ether oxygen and which to a hydroxyl group, a deuterium shift analysis was performed in CD<sub>3</sub>OD and CD<sub>3</sub>OH.<sup>6</sup> In those two media, the differences in the chemical shifts were about 0.09 ppm for C-12 and C-16, due to the  $\beta$  effect of hydroxyl group, and

<sup>(3) (</sup>a) Macabeo, A. P. G.; Krohn, K.; Gehle, D.; Read, R. W.; Brophy, J. J.; Cordell, G. A.; Franzblau, S. G.; Aguinaldo, A. M. *Phytochemistry* **2005**, *66*, 1158–1162. (b) Abe, F.; Chen, R.; Yamauchi, T.; Marubayashi, N.; Ueda, I. *Chem. Pharm. Bull.* **1989**, *37*, 887–890. (c) Abe, F.; Yamauchi, T.; Chen, R. F.; Nonaka, G.; Santisuk, T.; Padolina, W. G. *Phytochemistry* **1990**, *29*, 3547–3552. (d) Yamauchi, T.; Abe, F.; Padolina, W. G.; Dayrit, F. M. *Phytochemistry* **1990**, *29*, 3321–3325. (e) Kam, T. S.; Nyeoh, K. T.; Sim, K. M.; Yoganathan, Y. *Phytochemistry* **1997**, *45*, 1303–1305. (f) Salim, A. A.; Garson, M. J.; Craik, D. J. J. *Nat. Prod.* **2004**, *67*, 1591–1594.

<sup>(4)</sup> A MeOH extract of the leaves of *A. pneumatophora* collected in Malaysia in 2006 was partitioned between EtOAc and 3% aq tartaric acid. The water-soluble fraction was adjusted to pH 9 with saturated Na<sub>2</sub>CO<sub>3</sub> and was extracted with CHCl<sub>3</sub>. The CHCl<sub>3</sub>-soluble fraction was subjected to silica gel column chromatography (elution, EtOAc/MeOH 1:0  $\rightarrow$  0:1). The MeOH fractions were purified by C18 HPLC (MeOH/H2O/TFA solvent system) to afford alsmaphorazines A (1, 0.5 mg, 0.00025%) and B (2, 0.9 mg, 0.00045%).

<sup>(5)</sup> Alsmaphorazine A (1): colorless amorphous solid;  $[\alpha]_D^{20} - 62$  (*c* 0.1, MeOH); IR (film)  $\nu_{\text{max}}$  3433 and 1642 cm<sup>-1</sup>; UV (MeOH)  $\lambda_{\text{max}}$  314 ( $\varepsilon$  5220), 254 ( $\varepsilon$  5450), and 223 ( $\varepsilon$  11980) nm; <sup>1</sup>H and <sup>13</sup>C NMR data (Table 1); ESIMS *m*/*z* 385 (M + H)<sup>+</sup>; HRESIMS *m*/*z* 385.1403 [(M + H)<sup>+</sup>, calcd for C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>6</sub>, 385.1394].

0.06–0.07 ppm for C-2, C-11, C-13, and C-15 due to the  $\gamma$  effect of hydroxyl group, whereas that it was only 0.01 ppm for C-20. Consequently, the ethereal oxygen atom was determined to be on C-20. The gross structure of **1** was thus elucidated to be as shown in Figure 1, possessing a novel ring system in which 1,2-oxazinane and isoxazolidine were fused together.

The relative stereochemistry of **1** was elucidated by the NOESY correlations. The presence of an acetyl group of  $\beta$ -configuration at C-20 was shown by the correlation between H<sub>3</sub>-18/H-15, and that of methoxycarbonyl moiety of  $\beta$ -configuration by those between H<sub>3</sub>-23/H-21b and H-21b/H-6b. Thus, the relative stereochemistry of **1** was established to be as shown in the computer-generated 3D drawing in Figure 2.



Figure 2. Selected NOESY correlations (arrows) and relative stereochemistry for alsmaphorazine A (1).

Alsmaphorazine B (2)<sup>7</sup> showed the pseudomolecular ion peak at m/z 369 (M + H)<sup>+</sup> in ESIMS, and the molecular formula was established to be C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub> by HRESIMS [m/z369.1446 (M + H)<sup>+</sup>  $\Delta$  +0.1 mmu], which was smaller than that of **1** by 16 Da. Its <sup>1</sup>H and <sup>13</sup>C NMR data (Tables 1) disclosed 20 carbon signals that were analogous to those of **1** except for the chemical shift of C-12 sp<sup>2</sup> methine. A detailed analysis of 2D NMR data suggested that the structure of **2** was basically the same as that of **1** except that C-12 of **2** had a hydroxyl group. The relative stereochemistry of **2** was established by the NOESY correlations. The correlations of H<sub>3</sub>-18/H-15, H-23/H-21b, and H-21b/H-6b indicated that the acetyl group at C-20 and the methoxycarbonyl moiety at C-16 were both of  $\beta$ -configurations, as in **1**. The absolute configuration of **2** was studied by comparing its experimental CD spectrum with the calculated CD spectrum, the CD calculations performed by Turbomole 6.1<sup>8</sup> using TD-DFT-B3LYP/TZVPP level of theory on RI-DFT-BP386LYP/TZVPP<sup>9-13</sup> optimized geometries. The conformer used for CD calculation was the model obtained by using MC calculations (MMFF94 force field,<sup>9</sup> Macromodel 9.1.).<sup>14</sup> The CD spectrum of **2** and that calculated for the molecule having 3S,5S,7R,15R,16S,20S were in good agreement (Figure 3). Therefore, the absolute configuration of **2** was deduced to be 3S,5S,7R,15R,16S,20S.



Figure 3. CD and UV spectra of alsmaphorazine B (2). Dotted lines indicated simulated CD and UV curves of 2.

Biogenetic relationships among monoterpene indole alkaloids including stemmadenine and 5-nor-indole derivatives such as vallesamine and apparicine have been discussed.<sup>15</sup> A plausible biogenetic route for the present alkaloids **1** and **2** is proposed in Scheme 1. Compounds **1** and **2** might be derived from scholaricine skeleton<sup>16</sup> that might be derived from pre-acuamicine as follows. Polonovski-type reaction<sup>17</sup> of an *N*-oxidative product might result in an iminium

(14) Monte Carlo simulation and molecular mechanics calculation were conducted by Macromodel program Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. *Comput. Chem.* **1990**, *11*, 440–467.

(15) (a) Kutney, J. P.; Nelson, V. R.; Wigfield, D. C. J. Am. Chem. Soc. 1969, 91, 4278–4279. (b) Kutney, J. P.; Nelson, V. R.; Wigfield, D. C. J. Am. Chem. Soc. 1969, 91, 4279–4280. (c) Ahond, A.; Cavé, A.; Kan-Fan, C.; Langlois, Y.; Potier, P. J. Chem. Soc., Chem. Commun. 1970, 517. (d) Scott, A. I.; Yeh, C. L.; Greenslade, D. J. Chem. Soc., Chem. Commun. 1978, 947–948.

(16) Banerji, A.; Siddhanta, A. K. *Phytochemistry* 1981, 20, 540–542.
(17) Grierson, D. Org. React. 1990, 39, 85–295.

<sup>(6)</sup> Kita, M.; Ohishi, N.; Konishi, K.; Kondo, M.; Koyama, T.; Kitamura, M.; Yamada, K.; Uemura, D. *Tetrahedron* **2007**, *63*, 6241–6251.

<sup>(7)</sup> Alsmaphorazine B (2): colorless amorphous solid;  $[\alpha]_D^{20} - 36$  (*c* 0.1, MeOH); IR (film)  $\nu_{max}$  3434 and 1644 cm<sup>-1</sup>; UV (MeOH)  $\lambda_{max}$  281 ( $\epsilon$  4290) and 227 ( $\epsilon$  8220) nm; <sup>1</sup>H and <sup>13</sup>C NMR data (Table 1); ESIMS *m*/*z* 369 (M + H)<sup>+</sup>; HRESIMS *m*/*z* 369.1446 [(M + H)<sup>+</sup>, calcd for C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>, 369.1445].

<sup>(8)</sup> TURBOMOLE V6.1, 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

<sup>(9) (</sup>a) Halgren, T. J. Am. Chem. Soc. 1990, 112, 4710–4723. (b) Halgren,
T. J. Am. Chem. Soc. 1992, 114, 7827–7843. (c) Halgren, T. J. Comput. Chem. 1996, 17, 490–519. (d) Halgren, T. J. Comput. Chem. 1996, 17, 520–552.

<sup>(10)</sup> Eickorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283–289.

<sup>(11)</sup> Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.

<sup>(12)</sup> Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785–789.
(13) Schafer, A.; Horn, H.; Ahlrichs, R. *J. Chem. Phys.* 1994, *100*, 5829–5835.



intermediate with a five-membered ring system. Cleavage of the N-4–C-21 bond and linking of N-4 to C-5 followed by oxidation will produce an *N*-oxide derivative. Attack by

the N-4 oxygen on C-20 of the epoxide will give alsmaphorazine A (1) with an 8-oxa-1-aza-bicyclo[3.2.1]octane ring system.

Alsmaphorazine A was found to dose-dependently inhibit the NO production in LPS-stimulated J774.1, scarcely affecting the cell viability (IC<sub>50</sub> 49.2  $\mu$ M).<sup>18</sup> On the other hand, **2** did not show such an inhibitory effect at 50  $\mu$ M.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and a grant from the Open Research Center Project.

**Supporting Information Available:** 1D and 2D NMR spectra for compounds 1 and 2 and atom coordinate of 2. This material is available free of charge via the Internet at http://pubs.acs.org.

OL101825F

(18) Aktan, F. Life Sci. 2004, 75, 639-653.